Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation.
نویسندگان
چکیده
Molecular beacons are FRET-based target-activatable probes. They offer control of fluorescence emission in response to specific cancer targets, thus are useful tools for in vivo cancer imaging. Photodynamic therapy (PDT) is a cell-killing process by light activation of a photosensitizer (PS) in the presence of oxygen. The key cytotoxic agent is singlet oxygen ((1)O(2)). By combining these two principles (FRET and PDT), we have introduced a concept of photodynamic molecular beacons (PMB) for controlling the PS's ability to generate (1)O(2) and, ultimately, for controlling its PDT activity. The PMB comprises a disease-specific linker, a PS, and a (1)O(2) quencher, so that the PS's photoactivity is silenced until the linker interacts with a target molecule, such as a tumor-associated protease. Here, we report the full implementation of this concept by synthesizing a matrix metalloproteinase-7 (MMP7)-triggered PMB and achieving not only MMP7-triggered production of (1)O(2) in solution but also MMP7-mediated photodynamic cytotoxicity in cancer cells. Preliminary in vivo studies also reveal the MMP7-activated PDT efficacy of this PMB. This study validates the core principle of the PMB concept that selective PDT-induced cell death can be achieved by exerting precise control of the PS's ability to produce (1)O(2) by responding to specific cancer-associated biomarkers. Thus, PDT selectivity will no longer depend solely on how selectively the PS can be delivered to cancer cells. Rather, it will depend on how selective a biomarker is to cancer cells, and how selective the interaction of PMB is to this biomarker.
منابع مشابه
Facile synthesis of advanced photodynamic molecular beacon architectures.
Nucleic acid photodynamic molecular beacons (PMBs) are a class of activatable photosensitizers that increase singlet oxygen generation upon binding a specific target sequence. Normally, PMBs are functionalized with multiple solution-phase labeling and purification steps. Here, we make use of a flexible solid-phase approach for completely automated synthesis of PMBs. This enabled the creation of...
متن کاملSynthesis and Photosensitizing Properties of an Activatable Phthalocyanine-Subphthalocyanine Triad
In this article, we describe a photosensitizer (PS) whose ability to generate singlet oxygen (1O2) and fluorescence emission has been designed as tumor responsive. More specifically, the PS consists of a silicon phthalocyanine (SiPc) core, axially substituted with two subphthalocyanine (SubPc) units, covalently linked by a disulfide linker, which is cleavable in the presence of a strong reducin...
متن کاملFRET quenching of photosensitizer singlet oxygen generation.
The development of activatable photodynamic therapy (PDT) has demonstrated a utility for effective photosensitizer quenchers. However, little is known quantitatively about Forster resonance energy transfer (FRET) quenching of photosensitizers, even though these quenchers are versatile and readily available. To characterize FRET deactivation of singlet oxygen generation, we attached various quen...
متن کاملPhotosensitizer-Conjugated Gold Nanorods for Enzyme-Activatable Fluorescence Imaging and Photodynamic Therapy
We report on the development of photosensitizer-conjugated gold nanorods (MMP2P-GNR) in which photosensitizers were conjugated onto the surface of gold nanorods (GNR) via a protease-cleavable peptide linker. We hypothesized that fluorescence and phototoxicity of the conjugated photosensitizers would be suppressed in their native state, becoming activated only after cleavage by the target protea...
متن کاملPhotosensitization of coronene–purine hybrids for photodynamic therapy
Photosensitization properties of coronene-purine (Cor-P) hybrids for photodynamic therapy (PDT) have been investigated in this work. Eight hybrid Cor-P models have been designed by the additional of adenine (A) and guanine (G) nucleobase to Cor species. The evaluated absorption and emission energies indicated that the singular models are not good at all for PDT process whereas their hybrid mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 21 شماره
صفحات -
تاریخ انتشار 2007